3 research outputs found

    Concept development of installation technology for rainforest audio monitoring devices

    Get PDF
    Rainforest deforestation is the second largest anthropogenic source of greenhouse gas emission into the atmosphere, after the burning of fossil fuels. Up to 90 per cent of tropical rainforest deforestation is conducted illegally. Rainforest Connection endeavour to reduce this number through the installation of up-recycled Audio Monitoring Devices installed high in the trees of the forest. The presented work aims to assist Rainforest Connection in their mission through the application of concept development methods for the enhancement of installation operations performed in the field. Due to the nature of the company a premium is placed on immediately implementable techniques. In response, both incremental improvements to current operations, through the adoption of industry techniques and commercially available equipment, and novel generated solutions are provided. The paper recommends the employment of extendable carbon fibre poles for the installation of the Audio Monitoring Devices as a novel solution and identifies a path forward for further development of the installation technique. The adaption of commercial telescopic carbon fibre poles from the window washing industry repre-sents an additional tool for field operations that has the potential to save hours per temporarily installed device; while providing an immediate pathway for field trials in Ecuador at a low investment cost. A segment carbon fibre pole is recommended for future development of high elevation, permanent installations performed from the ground

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
    corecore